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Objective. Metachromatic leukodystrophy (MLD) is an inherited disease caused by a deficiency of the enzyme arylsulfatase A
(ARSA) that leads to severe physiologic and developmental problems. Our study is aimed at elucidating the clinical and genetic
characteristics of Chinese MLD patients. Methods. Clinical data of 21 MLD patients was collected. All coding exons of ARSA
and their flanking intronic sequences were amplified by polymerase chain reaction and subjected to direct sequencing.
Results. All 21 patients were diagnosed with MLD clinically and genetically, out of which 17 patients were late infantile and
4 were juvenile types. A total of 34 ARSA mutations, including 28 novel mutations (22 missense, 1 splicing, 1 nonsense, 3
small insertions, and 1 small deletion mutation) and 6 known mutations (5 missense and 1 small insertion mutation), were
identified. Prenatal diagnosis was performed for four pedigrees. One fetus was a patient, two fetuses were carriers, and two
were wild type. Conclusions. The present study discovered 28 novel ARSA mutations and widely expanded the mutation

spectrum of ARSA. Four successful prenatal diagnoses provided critical information for MLD families.

1. Introduction

Metachromatic leukodystrophy (MLD) is a genetic disorder
caused by the deficiency of the enzyme arylsulfatase A
(ARSA) in lipid metabolism [1-3]. It is estimated that the
overall incidence of autosomal recessive MLD is 1:40,000-
1:100,000 [1]. The classical symptoms are presented mainly
as progressive physical and mental deterioration, clumsiness,
frequent falls, toe walking, slurred speech, weakness, hypoto-
nia, and seizures. MLD patients could be classified into three
subtypes, including late infantile, juvenile, and adult forms
based on the age of the first symptom onset [1]. The late
infantile form usually manifests in the second year of life.
The juvenile form, with an onset between 4 and 15 years, is
further subdivided into early juvenile and late juvenile

depending on whether the onset is before or after 6 years of
age. The adult form has an onset older than 15 years of age
[1, 4-6]. Magnetic resonance imaging and biochemical
assays are commonly used for diagnosis [7-9]. Measuring
ARSA enzymatic activity in leukocytes from whole blood
is the standard biochemical procedure [10]. However,
diagnosis of MLD would be based on ARSA diagnosis.
ARSA is located on chromosome 22ql3 containing eight
exons and is transcribed into three mRNA species with a
total length of 3.2kb. Currently, the Human Gene Mutation
Database (http://www.hgmd.cf.ac.uk/ac/gene.php?gene=ARSA)
has reported a total of 217 ARSA mutations. Among them
are c.459+1G>A and c.1277C>T (pPro426Leu), which
occur more frequently in the European population with
over 200 reported mutations in MLD patients [10]. The
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former causes a splice donor site mutation, which occurs
frequently in late infantile patients, whereas the latter
appears in adult or juvenile patients [10]. In addition to
pathogenic mutations, an ARSA pseudodeficiency allele,
such as c.1049A>G, leads to lower ARSA activity, which
results in a partial mistargeting of the enzyme [11]. The
aim of this study was to elucidate the clinical and genetic
characteristics of Chinese MLD patients. Additionally,
for MLD pedigrees diagnosed genetically, we performed
prenatal diagnosis.

2. Materials and Methods

2.1. Patients. Twenty-one MLD patients (Ptl-Pt21) from
twenty-one unrelated families were enrolled in this study at
the Department of Pediatrics at Peking University First
Hospital. All patients were clinically diagnosed with MLD
based on the manifestation, classical MRI feature, and ARSA
enzyme deficiency in leukocytes. Out of 21 patients, thirteen
patients were male (61.90%) and eight patients were female
(38.10%). The median age was 32 months (minimum 20
months, maximum 11 years old). Clinical characteristics of
patients were collected, such as onset age, symptoms, neuro-
logical findings, and brain MRI findings. Our study was
conducted with the patients’ understanding and consent.
The study was approved by the Ethics Committee of
Peking University First Hospital, and informed consent
was obtained from the patients’ legal guardians.

2.2. Biochemical Studies. Patient studies were performed
using low-temperature assays of arylsulfatase A activity
determination in leukocytes [12], and the patients demon-
strated low ARSA activity (<10% normal range).

2.3. Mutation Analysis. Genomic DNA was extracted from
peripheral blood leukocytes of patients and their parents
according to the standard protocols of the QIAamp DNA
blood mini kit (Qiagene Inc.). Using reported PCR primers
and annealing temperatures [13], ARSA was amplified and
the PCR products were purified by a DNA purification kit.
PCR conditions were as follows: 100 ng of patient DNA was
amplified in 10 uL of buffer containing 0.5 yL of 5mmol/L
dNTP, 50 ng of each primer, 5uL of 2x GC buffer (Takara,
Dalian, China), and 1 4L of Taqg DNA polymerase (Tiangen,
Beijing, China). Then, the PCR products were subject to an
automated sequencer. The samples collected before 2013
were sequenced by the Sanger sequencing method, whereas
samples collected after 2013 were sequenced by PANO-seq.
The putative mutations were confirmed using duplicate
PCR products or digested PCR products. The effect of the
amino acid changes in ARSA was predicted by the web server
PolyPhen-2 with the HumDiv model (http://genetics.bwh.
harvard.edu/pph2/).

For prenatal diagnosis, chorionic villus biopsy (CVS) or
amniocentesis was performed for fetuses in four MLD fami-
lies (Pt5, Pt7, Pt15, and Pt18) to obtain samples. A Promega
Wizard® Genomic DNA Purification Kit (A1120) was used
to extract the genomic DNA.
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2.4. RNA Isolation from Peripheral Blood Cells and Detection
of ARSA mRNA. Total RNA was prepared from blood cells
using the TRIzol reagent (Invitrogen, Waltham, MA, USA)
according to the manufacturer’s instructions. Five hundred
nanograms of RNA was reverse transcribed using oligo
d(T),,, and the complementary DNA was added to the
quantitative real-time PCR assays.

3. Results

3.1. Clinical Finding. Clinical data were collected and are
shown in Table 1. Ages at onset ranged from 6 months
to 5 years old, with a median age of 25 months. Out of
21 patients, the main complaints from the 10 patients were
motor regression, 4 with both motor and intelligence regres-
sion, 6 showing development retardation, and 1 with abnor-
mal walking posture. Symmetrical abnormalities in deep
white matter (WM) (Figure 1) were observed in MRI images
in all 21 patients. ARSA activity was measured in 14 patients,
all of which were lower than 10% of the normal range. A
Babinski sign was positive in all patients except Ptl, Pt5,
and Pt8.

All patients were clinically diagnosed with MLD accord-
ing to the clinical manifestations described above (Table 1).
Out of 21 patients, 17 late infantile-type and 4 juvenile-type
patients were diagnosed based on their onset age of younger
than 30 mon and older than 30 mon, respectively.

3.2. Genetic Findings. Thirty-four mutations, including 28
novel and 6 known mutations, were found in ARSA
(Table 2). The 28 novel mutations included 22 missense
mutations, 3 small insertions, 1 splicing mutation, 1 small
deletion, and 1 nonsense mutation. Among these novel
mutations, the mutation ¢.1130_1132delTCT caused a three
base pair deletion in ARSA, while the mutation c.954G>A,
pTrp318Term produced a premature termination code,
the mutations c¢.1344_1345insCC, ¢.302_303insG, and
€.1428_1429insC caused one or two base pair insertion
in ARSA, and the mutations c.1108-20A>G, c.465G>A
(p.Lys125ProfsX17), and IVS3+2T>C led to splicing and
amino acid changes in the protein. Mutations ¢.1172T>G
(p-Val391Gly), ¢.827C>T  (p.Thr276Met), c.925G>A
(pGlu309Lys), and ¢.1130_1132delTCT were all detected
in 2 patients, respectively. After predicting the effect of
the amino acid change in ARSA by the web server
PolyPhen-2 with the HumDiv model, we found that 28
mutations were probably damaging to the protein activity
with a high score and specificity. Six known mutations
have been reported, including c917C>T, c.827C>T,
¢.179_180insCA, ¢.257G>A, ¢.925G>A, and ¢.302G>T.
Out of 21 patients, 2 (Pt2 and Pt3) harbored homozygous
mutations in ARSA and 19 had compound heterozygous
mutations in ARSA. Two patients had homozygous muta-
tions of ARSA that were inherited from their parents. All 19
patients with compound heterozygous mutations of ARSA
had mutations that were inherited from their parents, except
for Pt14 and Pt19. The ARSA c.465G>A (p.Lys125ProfsX17)
mutation in Pt14 was inherited from the father with a hetero-
zygous variation on one allele and the mother with a wild-
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FIGURE 1: Magnetic resonance imaging (MRI) shows symmetrical deep lesions located in periventricular white matter, which was low signal

in TIWI (a), high signal in T2WI (b), and high signal in DWI (c).

type mutation on the other allele. Pt19 has spontaneous
splicing mutation IVS3+2T>C.

In Pt5, Pt7, Pt15, and Pt18 MLD family genetic diagno-
ses, prenatal diagnosis was performed for fetuses after the
second or third pregnancy (Table 3). All samples were tested
by a short tandem repeat (STR) linkage analysis to exclude
contamination from the mother’s tissue. The results showed
that the fetuses had wild-type ARSA in the Pt5 (c.917C>T
and ¢.827C>T) and Ptl15 (c.44G>T and c.610C>G) cases.
While one fetus in the Pt7 MLD family had a compound het-
erozygous mutation (c.1130_1132delTCT and c.1238A>G),
another fetus in Pt7 carried one heterozygous variation
(c.1238A>G (p.Asp413Gly)). The compound heterozy-
gous mutations ¢.302_303insG and c.1428 1429insC were
detected in fetuses of Pt18’s mother.

4. Discussion

MLD is a kind of lysosomal storage disorder due to the
deficiency of the ARSA enzyme, which is involved in the
metabolism of membrane sulfatides into galactosylceramide.
Progressive demyelination and dysfunction of the peripheral
and central nervous systems is the symptom of this disease as
the undegraded sulfatides require time to accumulate in oli-
godendrocytes and Schwann cells. In this study, 21 patients
presented typical clinical symptoms, including motor regres-
sion, motor and intelligence regression, development retar-
dation, and abnormal walking posture. They all had typical
brain MRI findings. Fourteen patients had lower than 10%
normal activity of the ARSA outcome. According to the
above clinical manifestations described, all patients were
clinically diagnosed as MLD. All the patients” ages at onset
ranged from 6 months to 5 years old. Out of 21 patients, 17
patients of younger than 24 mon were diagnosed as the late
infantile type and the remaining 4 patients as juvenile type.

ARSA, the disease-causing gene of MLD, is located on
chromosome 22q13, has a total length of 3.2kb, contains
eight exons, and is transcribed into three mRNA species.
To date, the Human Gene Mutation Database (http://www.
hgmd.cf.ac.uk/ac/gene.php?gene=ARSA) has reported a total
of 217 ARSA mutations, including 161 missense mutations,
14 splicing-site mutations, 20 small deletions, 12 small
insertions, 4 small indels, 2 gross deletions, 2 complex rear-
rangements, 1 gross insertion, and 1 regulatory mutation.
Here, 34 ARSA mutations were identified, which included

28 novel and 6 known mutations [4-9, 14]. Because most
mutations in our study are novel mutations, the diagnosis
of MLD should be confirmed not only by low ARSA activity
but also by increased sulfatiduria. In our study, 28 novel
mutations, including 22 missense mutations, 3 small inser-
tions, 1 splicing mutation, 1 small deletion, and 1 nonsense
mutation, and 6 reported mutations (c.917C>T, ¢.827C>T,
¢.179_180insCA, ¢.257G>A, c¢.925G>A, and ¢.302G>T) were
found [4-9, 14].

For the 28 novel mutations, we predicted the effect of
amino acid changes of the 22 missense mutations in ARSA
by the web server PolyPhen-2 with the HumDiv model
(Table 4). The scores of mutations, including 251C>A
(pPro84Gln), 427T>C (p.Phel43Leu), 640G>A (p.Ala214Thr),
and 754T>C (p.Ser252Pro), were 0.991-0.999. Therefore,
we predicted that they could cause damage to the function
of the ARSA protein. The mutational sensitivity of 427T>C
(p.Phel43Leu), 640G>A (p.Ala214Thr), and 754T>C
(p-Ser252Pro) was 0.14, 0.69, and 0.55, respectively. All
the scores of the other missense mutations were 1, with a
sensitivity of 0 and specificity of 1. They included the
mutation of the terminal C domain. Therefore, we pre-
dicted that they could destroy the function of the ARSA
protein. The mutation ¢.1130_1132delTCT caused a three
base pair deletion in ARSA, and the mutation c.954G>A,
pTrp318Term produced a premature termination codon,
while the mutations ¢.1344_1345insCC, c¢.302_303insG,
and ¢.1428_1429insC inserted one or two base pairs in
ARSA. We predicted that the mutations ¢.1108-20A>G,
c465G>A (p.Lys125ProfsX17), and IVS3+2T>C resulted
in splicing, which could cause damage to the function
of ARSA protein. Based on this analysis, the 28 muta-
tions are probably damaging to protein activity. All 6 known
mutations, including c.917C>T, ¢.827C>T, ¢.179_180insCA,
c257G>A, ¢.925G>A, and ¢.302G>T, could destroy the
function of the ARSA protein and were considered
disease-causing mutations.

Through further analysis, we found that mutations
c.251C>A, ¢.1049T>A, c.244C>T, c296G>T c911A>T,
c.1238A>G, and ¢.925G>A lead to changes of the chemical
properties in residues. The crystal structure of ARSA and
the substrate also indicated that p.Lys304 is one of the key
residues that interacted with the ester oxygen atom (O,) of
the substrate in the reaction pocket [15] (Figure 2). Other
mutations, which do not change the chemical properties of
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TasLE 2: The ARSA genotypes in 21 Chinese MLD patients.

Pt. ID Mutation Genetic Reported Heritage
1 ¢.251C>A (pPro84Gln) Hetero Novel Father
1 c.1172T>G (p.Val391Gly)* Hetero Novel Mother
2 c.1172T>G (p.Val391Gly)* Homo Novel Father and mother
3 ¢.960G>A (p.Trp320Term) Homo Novel Father and mother
4 c911A>T (p.Lys304Ile) Hetero Novel Father
4 c.1049T>A (p.Leu350GlIn) Hetero Novel Mother
5 ¢.917C>T (P.Thr306Met) Hetero Reported Father
5 ¢.827C>T (P.Thr276Met)* Hetero Reported Mother
6 c.925G>A (p.Glu309Lys)* Hetero Reported Father
6 c427T>C (p.Phel43Leu) Hetero Novel Mother
7 ¢.1130_1132delTCT* Hetero Novel Father
7 c.1238A>G (p.Asp413Gly) Hetero Novel Mother
8 c.244C>T (p.Arg82Trp) Hetero Novel Father
8 c.179_180insCA Hetero Reported Mother
9 ¢.1130_1132delTCT* Hetero Novel Father
9 ¢.853C>G (p.Asp283Glu) Hetero Novel Mother
10 ¢.218C>T (p.Pro73Leu) Hetero Novel Father
10 ¢.827C>T (P.Thr276Met)* Hetero Reported Mother
11 ¢.32T>C (p.Leul1Pro) Hetero Novel Mother
11 c.1108-20A>G Hetero Novel Father
12 c.257G>A (p.Arg86Gln) Hetero Reported Mother
12 ¢.482T>C (p.Leul61Pro) Hetero Novel Father
13 ¢.925G>A (pGlu309Lys)* Hetero Reported Mother
13 ¢.302G>T (pGlyl01Val) Hetero Reported Father
14 c.465G>A (p.Lys125ProfsX17) Hetero Novel Father
14 ARSA del? Mother
15 c.610C>G (p.Arg204Gly) Hetero Novel Mother
15 c.44G>T (p.Glyl5Val) Hetero Novel Father
16 c.640G>A (p. Ala214Thr) Hetero Novel Mother
16 ¢.893G>T (p.Gly298Val) Hetero Novel Father
17 ¢.754T>C (p.Ser252Pro) Hetero Novel Father
17 c.1344_1345insCC Hetero Novel Mother
18 ¢.302_303insG Hetero Novel Father
18 c.1428_1429insC Hetero Novel Mother
19 c.1160G>T (p.387Gly>Val) Hetero Novel Mother
19 IVS3+2T>C Hetero Novel Spontaneous
20 ¢.830T>C (p.Leu277Pro) Hetero Novel Father
20 ¢.383T>C (p.Leul28Pro) Hetero Novel Mother
21 c.466G>C (p.Gly156Arg) Hetero Novel Father
21 ¢.629T>C (pLeu210Pro) Hetero Novel Mother

* indicates that mutations were detected more than once in this study.

the residues, could also be important if they were localized
near the reaction pocket. In human ARSA, lysine 123, lysine
302, serine 150, and histidine 229 were identified as the key
residues that form the reaction pocket and interact with
the substrate [15]. Here, the mutation p.Thr306Met near
p.Lys302 in Pt4 and Pt5 resulted in the loss of enzyme
activity in vitro. The mutation p.Asp283Glu in Pt9, which

also does not change the chemical properties of the resi-
due, also leads to MLD in previous studies. It suggests that
p-Asp283Glu results in a loss of the interaction between
ARSA and the substrate.

Unlike the reported studies in the European population,
no patients were detected with mutations c.459+1G>A
and ¢.1277C>T (pPro426Leu), which occurred with high
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TaBLE 3: The prenatal diagnosis of four families.
Family Family number ARSA mutation ARSA mutation
Proband c917C>T (P.Thr306Met) (heterozygous) c.827C>T (P.Thr276Met) (heterozygous)
PE5 Father ¢917C (wild type) c.827C>T (P.Thr276Met) (heterozygous)
Mother ¢917C>T (P.Thr306Met) (heterozygous) ¢.827C (wild type)
Fetus ¢917C (wild type) ¢.827C (wild type)
Proband €.1130_1132delTCT (p.Phe377del) (heterozygous) c.1238A>G (p.Asp413Gly) (heterozygous)
Father ¢.1130_1132TCT (wild type) c.1238A>G (p.Asp413Gly) (heterozygous)
Pt7 Mother ¢.1130_1132delTCT (p.Phe377del) (heterozygous) c.1238A (wild type)
Fetus 1 ¢.1130_1132delTCT (p.Phe377del) (heterozygous) c.1238A>G (p.Asp413Gly) (heterozygous)
Fetus 2 ¢.1130_1132TCT (wild type) c.1238A>G (p.Asp413Gly) (heterozygous)
Proband c.610C>G (p.Arg204Gly) (heterozygous) c44G>T (p.Glyl5Val) (heterozygous)
P15 Father ¢.610C (wild type) c.44G>T (p.Glyl5Val) (heterozygous)
Mother c.610C>G (p.Arg204Gly) (heterozygous) c.44G (wild type)
Fetus ¢.610C (wild type) c.44G (wild type)
Proband €.302_303insG (p.L102Pfs) (heterozygous) ¢.1428_1429insC (p.S477Qfs) (heterozygous)
P18 Father ¢.302_303insG (p.L102Pfs) (heterozygous) c.1428_1429CA (wild type)
Mother ¢.302_303GC (wild type) ¢.1428_1429insC (p.S477Qfs) (heterozygous)
Fetus €.302_303insG (p.L102Pfs) (heterozygous) c.1428_1429insC (p.S477Qfs) (heterozygous)
TaBLE 4: Functional prediction of mutation in ARSA with amino acid changing by PolyPhen-2.
Mutation Function Score Sensitivity Specificity
251C>A (pPro84Gln) Probably damaging 0.911 0 0.94
1172T>G (p.Val391Gly) Probably damaging 1 0 1
911A>T (p.Lys3041le) Probably damaging 1 0 1
1049T>A (p.Leu350Gln) Probably damaging 1 0 1
917C>T (P.Thr306Met) Probably damaging 1 0 1
827C>T (P.Thr276Met) Probably damaging 1 0 1
925G>A (p.Glu309Lys) Probably damaging 1 0 1
427T>C (p.Phel43Leu) Probably damaging 0.999 0.14 0.99
1238A>G (p.Asp413Gly) Probably damaging 1 0 1
244C>T (p.Arg82Trp) Probably damaging 1 0 1
853C>G (p.Asp283Glu) Probably damaging 1 0 1
218C>T (p.Pro73Leu) Probably damaging 1 0 1
827C>T (P.Thr276Met) Probably damaging 1 0 1
257G>A (p.Arg86Gln) Probably damaging 1 0 1
925G>A (pGlu309Lys) Probably damaging 1 0 1
302G>T (pGly101Val) Probably damaging 1 0 1
640G>A (p. Ala214Thr) Probably damaging 0.994 0.69 0.97
893G>T (p.Gly298Val) Probably damaging 1 0 1
754T>C (p.Ser252Pro) Probably damaging 0.996 0.55 0.98
1160G>T (p.387 Gly>ValV) Probably damaging 1 0 1
830T>C (p.Leu277Pro) Probably damaging 1 0 1
383T>C (p.Leul28Pro) Probably damaging 1 0 1
466G>C (p.Gly156Arg) Probably damaging 1 0 1
629T>C (pLeu210Pro) Probably damaging 1 0 1

high frequency of MLD patients of Lebanese or Arabic
descent with a high degree of consanguinity and a com-
mon ethnic origin [17]. In contrast to these studies, no

frequency, according to the publication. The known muta-
tion ¢.917C>T (p.Thr306Met) was first reported in Europe
[16]. Mutation ¢.827C>T (PThr276Met) was found in a
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FiGurg 2: The illustration of ARSA 3D structure. Red and purple colors indicate the key residues to form reaction pocket. Green colors

indicate the missense mutations in this study.
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FiGURE 3: ARSA RNA-cDNA of Pt19.

highly frequent mutation was found in the current study
of the Chinese population.

In 21 MLD patients, 2 (Pt2 and Pt3) had homozy-
gous and 19 had compound heterozygous mutations of
ARSA. They were all consistent with autosomal recessive
inheritance. Two patients had homozygous mutations of
ARSA that were inherited from their parents. All 19
patients with compound heterozygous mutations of ARSA
had mutations that were inherited from their parents,
except Ptl14 and Pt19. The mutation of ARSA (c.465G>A
(p.Lys125ProfsX17)) in Pt14 was inherited from the father
with a heterozygous variation on one allele and the
mother with a wild-type allele. Pt19 has the spontaneous
splicing mutation IVS3+2T>C.

In Pt19, the mutation c.1160G>T was inherited from his
mother and the mutation IVS3+2T>C was a spontaneous
splicing mutation. After sequencing the cDNA of ARSA from
Pt19, it was suggested that this mutation causes exon 3 skip-
ping (Figure 3). Interestingly, mutation IVS3+2T>C could
not be detected in Pt19’s parents. It indicated that this
mutation may be a de novo mutation or that his father was
a chimera. Pt14 (c.465G>A) had a compound heterozygous

mutation, which has not been reported. His father
(c465G>A) had a heterozygous mutation, but his mother
had a wild-type allele (Figure 4). The 465 locus was the last
base in the second exon of ARSA. This synonymous mutation
was located between the second exon and second intron.
Therefore, we considered that it might affect splicing. Based
on the analysis of the child’s RNA, we found that after the
change of the 465 locus, RNA indeed produced a splicing
mutation, which presented as a splicing jump of the 371-
465 loci in the second exon (involved 95 bases). In this fam-
ily, children with a homozygous mutation in the 465 locus
might come from the maternal chromosome deletion in this
region. Therefore, we performed a fluorescence quantitative
PCR for the 465 site and found that the expression of the
reference gene in the generation was consistent with the
control group. However, the expression of the ARSA region
was half that of the control group, which confirmed that
the proband with the 465 locus had a heterozygous deletion
(Figure 5). To determine the deletion region, we designed
several primers to amplify the fragment of ARSA, including
exons 1-3, exons 1-5, and exons 1-8. Interestingly, the pro-
band, father, and mother showed only one band. Thus, we
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FiGURE 5: The fluorescent quantitation PCR result of the ARSA 465
site in proband (blue stands for reference gene, and orange stands
for ARSA).

supposed that the proband of the maternal chromosomes
contained the entire ARSA heterozygous deletion. Therefore,
these two mutations (IVS3+2T>C and c.465G>A) are
important not only for patient counseling but also for
the evaluation of prenatal diagnosis.

Prenatal diagnosis was important for MLD families with
ARSA mutations. We performed ARSA mutation analysis for
four MLD families in this study. There was a 25% risk of
recurrence and 25% risk of female carriers in all the MLD
families with an autosomal recessive genotype. In the Pt5
and Pt15 MLD families, ARSA without a mutation provided
critical information for parents carrying heterozygous ARSA
mutations without MLD. This is valuable for prenatal
diagnosis in the second pregnancy.

5. Conclusions

In summary, 21 Chinese patients were clinically and
genetically diagnosed with MLD and analyzed clinically and

genetically; four MLD families had additional prenatal diag-
noses. MLD is usually caused by the lack of the important
enzyme ARSA and results in damage to the nervous system,
kidneys, gallbladder, and other organs. In this study, we first
found that the patients showed classic clinical symptoms,
typical brain MRI findings, and low ARSA enzyme activity
of MLD, consistent with previous reports. Furthermore,
DNA sequencing detected that all patients carried ARSA
mutations, including 28 novel and 6 reported mutations.
We first reported one coding region mutation that influenced
splicing (c.465G>A (p.Lys125ProfsX17)). Prenatal diagnosis
was successfully carried out on five fetuses. This study pro-
vides more information on critical mutations of ARSA in
the Chinese population for MLD diagnosis and treatment
in the future.
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